1262

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 8§, AUGUST 1991

Full-Wave Analysis of Dielectric
Waveguides Using Tangential
Vector Finite Elements

Jin-Fa Lee, Member, IEEE, Din-Kow Sun, Member, IEEE, and Zoltan J. Cendes, Member, IEEE

Abstract —A new method is presented for the analysis of
dielectric waveguides. This method provides four major new
contributions: 1) a transformation of variables is introduced
that allows propagation constants to be computed directly;
2) #(curl) tangential vector finite elements are applied to
dielectric waveguides to obtain reliable approximate electromag-
netic fields; 3) the Lanczos algorithm is modified to solve the
required generalized eigenmatrix equation efficiently; and 4) the
reaction principle is used to provide a posteriori error estimates
for use in adaptive mesh refinement. The method described here
produces reliable solutions and applies to structures that con-
tain both electric and magnetic inhomogeneities. The answers
are refined adaptively to generate waveguide eigenmodes to
specified accuracy. Numerical results of an image guide, a
microstrip transmission line, and a pedestal-supported stripline
are shown. Computed solutions agree very well with the previ-
ously published results.

I. INTRODUCTION

T microwave, millimeter-wave, and optical frequen-

cies, various applications of dielectric waveguides
have been suggested. In the design of these structures, it
is important to calculate the propagation characteristics
of the guided modes in the waveguide. According to
Maxwell’s equations, all of the propagating modes within
an inhomogeneous structure are hybrid. Therefore, to
analyze such waveguides, it is necessary to perform full-
wave analysis.

Various types of analysis methods have been proposed
and used. Typical methods are the method of moment [1],
spectral-domain methods [2], finite difference methods
[3], [4], and finite element methods [3]-[7]. The finite
element method is probably the waveguide analysis
method that is the most generally applicable and most
versatile. With this method, it is possible to fit any polygo-
nal shape by choosing triangular element shapes and sizes
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and to increase the accuracy of the solution by using
high-order polynomial approximation functions.

The most serious difficulty in using the finite element
method for the analysis of the modes of dielectric wave-
guides is the appearance of spurious modes [7], [8]. Re-
cent reports [7]-[9] have suggested various ways to solve
this problem. Rahman and Davies [7] have used a penalty
function to enforce the divergence-free condition. This
requires the user to select a suitable penalty function
parameter. Kobelansky and Webb [8] proposed using the
fields which are exactly divergence-free to be the basis
functions in the finite element analysis. Such fields are
themselves computed by the finite element method. This
approach requires intensive computations since at least
tens of basis functions need to be calculated from an
auxiliary eigenmatrix equation.

In [9], Wong and Cendes observed that the occurrence
of the spurious modes is due to the improper modeling of
the null space of the curl operator. Subsequently, they
suggested three approaches to eliminate spurious modes:
using C! finite elements, using a consistent C! mesh, and
using tangential elements [12]. C' finite elements and the
C' consistent mesh allow the derivatives of the finite
element basis functions to be continuous. In this way, the
null space of the curl operator is modeled exactly and the
spurious modes degenerate to eigensolutions with eigen-
value zero.

Except for the tangential element method, the above
methods are all based upon a nodal finite element ap-
proach. Consequently, the resultant field is continuous in
both normal and tangential components across element
boundaries. For structures that have both eclectric and
magnetic inhomogeneities, special care is required on
element boundaries to ensure correct interfacial bound-
ary conditions.

A different approach to eliminating spurious modes is
to use tangential vector finite elements [9], [11], [12]. With
tangential vector finite elements, only the tangential con-
tinuity of the vector field is imposed across element
boundaries. The advantages of this approach are that 1) it
imposes only the continuity of the tangential components
of the electric and magnetic fields, as is required physi-
cally; 2) the interfacial boundary conditions are automati-
cally obtained through the natural boundary conditions
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built into the variational principle [12]; and 3) Dirichlet
boundary condition can be easily set along the element
edges. Various families of tangential elements are dis-
cussed in [11]. The lowest order tangential vector finite
elements are edge elements [10] in which the unknown
variables are associated with the edges of the element.

In this paper, we present the application of the high-
order % (curl) tangential vector finite elements to model
dielectric waveguides. The formulation employs a variable
transformation that allows the propagation constants in
waveguides to be computed at a specified frequency rather
than the other way around. In addition, an a posteriori
error criterion based on the reaction concept is used to
refine the finite element mesh adaptively.

II. NUMERICAL PROCEDURE

In the full-wave analysis of dielectric waveguides, it is
necessary to solve the following boundary value problem
(BVP):

1
VX —VXE—k%,&=0

in Q
Ky
&Xn=0 onl
VX&Xxn=0 onl, (D

where ) is the cross section of thé guiding structure

whose boundary is divided into two parts: the electric wall
I', and the magnetic wall I';. Here, the electric field is
assumed to have a z dependence as & = E(x,y)exp
(— jBz), where B is the propagation constant.

The corresponding variational functional for the BVP
(1) can be written as [13]

1
F(&) = [M—w X & — k?%,|€)2dQ

=/ 1 [IV.&,+iB&l +1V,x &[]
QM

— k%1€ dQ (2)

where &, =&,a,+&,a, and V. =d,a, +9,a,.

There are two approaches in solving eigenproblem (1)
by using the functional in (2). One is to solve for k* with
the propagation constant 8 given. The other is to specify
the operating frequency and solve for the propagation
constant 8. As pointed out in [14], the latter is preferred
in practical device design. Therefore, in this paper, we
present a numerical methodology to analyze dielectric
waveguides using the second approach.

A. Transformation of Variables

Imposing the operating frequency in functional (2) re-
sults in a quadratic eigenmatrix equation for 8 that is very
difficult and expensive to solve. Furthermore, B is real for
a propagating mode and imaginary for an evanescent
mode. Thus, this approach requires the solution of com-
plex eigenvalues. However, these two problems can be
eliminated by introducing the following transformation of
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variables:

e, = P&,

e, = B&,

e, = j&. (3)

With the variable transformation (3), the functional (2)
can be rewritten as

1
F(e) =LBZ[I—L—IVT.€: +e P —k%,le,|* |~ k%, le,|*

1
+—IV.xe, P dQ. (4)
My
In the functional (4), only k% and B? are involved. Thus,
extremizing the functional (4) with k2 as the given param-
eter, we have an eigenmatrix equation to solve for the
eigenvalues B2, Furthermore, the eigenvalues will be real
since B2 is positive for a propagating mode and negative
for an evanescent mode.
The Euler equation that corresponds to the functional
4) is
1 2 2

V.X—V,xe.——V.e,+—e, =k’,e, (5a)
Jos K, K,

1 1
BV, -—V.e, —V-—e, | =p%k%,e, (5b)

My

r

and the boundary conditions are

Axe=0 on I
(Ve,+te,)na=0 . .
. ¢
V.Xe_ a,=0 on I (6)

Applying the transverse divergence operator, V.-, on
both sides of (5a) results in

1 1
— B2V —Ve, +B*V-—e =k*V-ece.. (7)
My r
Adding (7) to (5b) for k2 # 0 yields
V.e,e. + B,e,=0. (8)

This is Gauss’s law for the source-free region. From (8), it
is clear that as long as the operating frequency is not 0,
solutions of (5) must satisfy the divergence-free condition.

The functional form given in (4) is symmetric. From the
resulting Euler equation (5), there is a set of eigensolu-
tions corresponding to 8% = 0. However, the solutions of
this set are not physical modes of the dielectric waveguide
since e, is arbitrary when 82 =0 in (5).

B. Tangential Vector Finite Elements

As mentioned earlier, several approaches can be used
to eliminate spurious modes. Tangential vector finite ele-
ments are preferred because they most closely match the
mathernatical and physical requirements of modeling di-
electric waveguides. In this subsection, we present the
construction of the two-dimensional #(curl) tangential
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€12

€12

Fig. 1. The two-dimensional #(curl) tangential vector finite element.

vector finite element. The two-dimensional ##(curl) tan-
gential vector finite element is described mathematically
as

H(curl) = {ele, € [L,(0)]*.V, X e, a, 2(Q))
“1 )

where L,(Q) is the set of square integrable functions, and

Z(Q) is the set of piecewise-linear functions in the
problem domain (). Since the #(curl) tangential vector
finite element provides a higher order approximation
than is obtained from edge elements [10] it wil] provide
more accurate numerical solutions and faster convergence
in applications. )

Unknowns in the #j(curl) element are assigned as
shown in Fig. 1. The tangential projection of the field e,
along any edge {i, j} is determined by two unknowns eO
and e” In addition, two facial unknowns, f, and I are
added to provide a quadratic approximation of the nor-
mal component of the field along any two of the three
edges. Notice that in Fig. 1, the edge variables e? ;; and e
provide common unknowns across element boundarres
Thus, the tangential continuity of the field e, across the
element boundaries is ensured. However, the facial vari-
ables f; and f; are local unknowns associated with each
separate triangular element. These two facial variables
are included to provide a complete linear approximation
for V. xe,.

We can express the transverse field e, by the nodal
vectors e’ as

5

¢ = Zea(f)

(10)

where ¢ =({;,{,¢,) is the two-dimensional barycentric
coordinate [15], and «;({) is the second-order Lagrange
interpolation polynomial at node i. However, with tan-
gential elements the nodal vectors e are not independent
unknowns. The edge variables eO and e and the facial
variables f, and f; are used as 1ndependent unknowns in
the 2% (curl) tangential finite element formulation.
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We need to determine the nodal vectors e’ in terms of
the new set of variables. At node 0, the nodal vector e°
satisfies

e iy =eg
0.7 _ 1
e Ly =ey (11)

where fl-j- is the unit vector pointing from node i to node
j. The solution of (11) is
0 1
€1 €
e’ = ————fy+—= oy (12)
Mg Ly Hoy t

where 7;; is the outward-directed normal of the edge
{i,/}. By observing that #;-{, = —sin6, and Ay b=
sin §;, (12) can be srmphfled further as

1

sinf,

e’ = (13)

1A _ 04
[620”01 e01”20]-

Similar expressions are obtained for the nodal vectors e!

and e, The results are
1_ 1 [ 15 _ 04 ]
¢ = sin6, €11y — €127y
2 1 [ 1~ 0 ] 14
¢ _Sinﬂz C1aflyn ™ €302 | - (14)

There are several ways to assign the facial variables fo
and f;. One is to define them as the quadratic part of the
normal components along two of the three edges:

. e’ +e?)
Jo={e' — 5 R
S e’ +e! .
fi=|e— ) ROV ‘ (15)

The tangential component along each edge is approxi-
mated to linear order. Thus, the nodal vectors e* and e°
are given by

, e+e’ i
et = + foht
5 020
, e'te .
&= + fiflg (16)
The vector e® is simply the linear average of ¢! and e
3 el +e?
e=—F (17

Substituting (13), (14), (16), and (17) into (10), the
transverse field e, within the triangular element is given
as :
&

sin 6,

14 _ 0p
[ekinij eijnki]

+ fofiag(4808s) + fiftg(440dy)  (18)

~ where the indices i, j, and k are cyclic modulo 3. From
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expression (18), we can write V_ X e_ as

V.Xe. =

1
1 I 0 o
sin @ [ektv‘r{z X Ry, - etjvrgi X nkl]

+ fol 440V, Ly +44V, L] X iy
+ f[1l44V. 8 4LV, L] X Ay

This can be reduced further to

(19)

2 ]
- RELIN R 0
V. Xe. = ig() > 4 [ek, + eij]az
2 . L
+ ;I‘fo[lm sin B4, — 1,80 0,4, ]a,

2
+ Zf1[llz sin 0,4, — lyysin 05 ]a, (20)

where A is the area of the triangle, and /,, is the length of
edge {i, j}. Equation (20) is obtained with the aid of the
following equations:

I8
ik
Vodi= o e
A;X Ay =sinba,
A, X Ay, = —sinb,a,. (21)

It is apparent from (20) that the two facial variables f
and f, provide the required linear terms in V, X e_, while
the edge variables together contribute the constant term.
Therefore, expression (18) describes the desired two-
dimensional #(curl) tangential vector finite element.

Since a, is always normal to the waveguide cross sec-
tion and tangential to material interfaces, it is natural to
use Lagrange interpolation polynomials to model the e,
component. However, to be consistent with the o#(curl)
element, the approximation for e. must be complete to
second order. The reason is as follows: the curl of the
field e can be written as VXe=(V.e,+e)Xa,+V, X
e.. Since V_ X e_ is complete to the first order, the gradi-
ent field V,e, should also be complete to first order.
Therefore, we need to use second-order approximation
polynomials to model e,.

C. Modified Lanczos Algorithm

1) The Eigenmatrix Equation: As described in the pre-
vious subsection, the vector function space . for the trial
field e is

<={[¢]

Applying (22) to the functional (4) and carrying out the
integration gives

sl Yo £
(23)

e. € H(curl),e. € 9‘”’2(9)} . (22)
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where
1
efLe, =j —|V. X e,|* — k2,le,|”dQ
QMr
1 2
ef@e,=f —le,|”dQ}
Qk,
1.1
eite, = Ef —e*V.e,dO)
M,
1 2 ;2 2
e*Pe, = f —IV.eI* — k,le, 1> dQ. (24)
QM,

The stationary point of the functional (23) is also the
solution of the following generalized eigenmatrix equa-

tion:
& 0]|é| @ €yl e -
[0 0“6:] P [g @”ez]' (25)

Notice that the matrix on the left side of (25) is singular.
Therefore, there are degenerate eigenvectors that corre-
spond to B%=0. With B2 =0, these eigenvectors do not
satisfy €e. + e, =10. Thus, they are nonphysical solu-
tions introduced by the variable transformation (3).

From the generalized eigenmatrix equation (25), it is
apparent that the nonphysical solutions that correspond
to B =0 form a vector function space A, where

a={e]

The suppression of these nonphysical solutions in the
Lanczos algorithm [16] is the subject of the next subsec-
tion.

Assuming the waveguide is lossless, it can be verified
that there exists an upper bound @2 = k%u €. . for the
eigenvalue B2, where u . is the maximum relative per-
meability and €, is the maximum relative permittivity of
the materials within the waveéguide. Physically, ® is the
propagation constant of a TEM wave in a homogeneous
medium with material properties u,,,, and €,..

By using the upper bound ©?, we can rewrite (25) as

74
B+ —

qre.] ©? s lfe] .
[? g:”:ez]=®2_32 ®2 [ez}. (437)
€ 7

The reason for transforming (23) into (27) is as follows: in
a dielectric waveguide, a more dominant mode corre-
sponds to a more positive value of 82 and therefore
02 /(0% — B*) will be larger. Although, in the literature
[16], it is said that the Lanczos #lgorithm can compute
either the largest or the smallest eigenvalue of the cigen-
matrix equation efficiently, numerical experience indi-
cates that the largest eigenvalue almost always converges
faster than the smailest one. Thus, if we solve (27) by
using the Lanczos algorithm, the eigenpairs will converge
more or less by the order of dominance. In most applica-
tions where only a few eigenmodes are sought, this fea-
ture is very desirable.

(26)

e, =0, eZ;éO}.
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2) Suppression of the Degenerate Solutions: The ele-
ments in the function space A are degenerate eigensolu-
tions of (25) with B2 =0. The occurrence of these addi-
tional solutions in the iterative process will slow down the
convergence of the desired eigenpairs in the Lanczos
algorithm.

To simplify the discussion, (27) is rewritten in the
following form:

P =\A2¢ (28)
where
‘ & ¢
L@z[g g] D= {@—FE €
& 9
0’ e.
A=®—2__? (,b:l:ez]. (29)

Based on (28), the Lanczos algorithm can be described as
follows: For a Krylov subspace %, that is spanned by the
following vectors: ¢y, (27 P, * -, (271P)" " 1o,,
where ¢, is the initial guess, the Lanczos algorithm seeks
to approximate each eigenpair by the pair A, ¢™ satisfy-
ing

¢ e %,
(P = N"D)p™ | K. (30)

Since the matrices & and 2 are real and symmetric,
the following two properties can be proved [11]:

* Assume that (A, é,) and (A,,¢,) with A, # A, are
two eigenpairs of (28). Then ¢{2¢, = 0.

* If the initial guess ¢, satisfies ¢ D¢, =0, V¢, € A,
then for any vector € %, we have ¢ 2¢ =0,
Vo, € A.

Thus, if we can select an initial guess ¢, such that
Q¢ L A, then additional solutions will not occur during
the iterative process. This can be done, for example, by
solving ¢, from the following equation:

260= || (31)
where
1 0
y=|t| amd y=|? (32)
1 0

3) Modified Lanczos Algorithm: The Lanczos algorithm
has been successfully applied to large sparse symmetric
generalized eigenmatrix equations [16], [17]. Interested
readers are referred to [16] and [17] for details. In equa-
tion (28), neither & nor 2 is a positive definite matrix.
Thus, (28) does not have the right form and we need to
modify the Lanczos algorithm to it. As a result of this
modification, the reduced eigenmatrix equation is not a
symmetric tridiagonal matrix. It becomes a nonsymmetric,
but still tridiagonal, matrix. This reduced eigenmatrix
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equation can be solved by calling suitable procedures
from EISPACK [18]. The modified version of the Lanczos
algorithm for the present application is outlined as fol-
lows:

1) Input the number of desired modes.
2) Choose a vector g such that g L A. For the A in
(26), we choose g as

a=[7]

q.[1,1,---,1],¢, = 0.

3) Orthogonalize g against the previous converged
eigenvectors ¢; by

(33)
where

(34)

a,=¢,'q (35)

where n, is the number of converged eigenpairs.
4) Solve the matrix equation 2¢ = g for ¢.
5) Normalize ¢ and assign the resultant vector as v,

vy = ”?ﬁ, m=1, (36)
6) Assign a vector f as follows:
f=Lv,—h, ,2v,—h,_ | .2v, ; (37)
where
v, 2,
mom = v, 2v,,
h _ m P (38)

m—1,m~ ¢
U1 20V

7) Solve the matrix equation Qw = f for « and assign
hm+1,m = ”w“

8) Calculate the dominant eigenpair (A“, ™) of the
tridiagonal matrix H,,, where H,, is

m—1

hl,l h1,2
h2,1 h2,2 h2,3
H - hsVz h3,3
m
hm—l,m
L hm,m—l hm,m 1

(39)
Solving the dominant eigenpair of H,, can be done.
by calling EISPACK procedures. Then, check the
residual norm 4, ., .|yl for convergence; if not
converged, increment m by 1 and go to step 6.
9) Increment n, by 1, and construct the Ritz vector. If
all the desired modes have converged, then stop.
Otherwise go to step 2.
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D. Adaptive Mesh Refinement

In the adaptive mesh generation procedure in this
paper, the degree of elements is kept fixed and only the
mesh is refined. In the literature, this type of mesh
refinement is called the h version.

1) A Posteriori Error Estimation: In the previous sec-
tions, the formulation was derived to solve for the electric
field &. Similarly, a variational formulation can be ob-
tained for the magnetic field 5#. To analyze the quality of
the obtained solutions and obtain quantitative informa-
tion about the error, we solve the problem once each for
'& and . As pointed out by Bossavit and Mayergoyz
[10], this approach, though requiring more work, provides
useful information for error analysis. This is because of
the duality of & and #.

Here, we provide a new procedure for computing er-
rors in finite element solutions. This procedure is based
on the reaction concept [13], [20]. By definition, the
reaction of field a on source b is [13]

(a,by=[ (&% F" = H.4")dO (40)
o ‘
The sources #® and .#° can be determined from the
trial fields €”? and &#? according to

FP=VXH - joes”

M =—(VXE + jout?). (41)
The true field at resonance is a source-free field; thus the
reaction of any field with the true source is zero. Hence,

if we let a = b represent a trial field and the associated
source, (40) reduces to

(a,ay= [ (£ 4= H " 4*)dQ=0. (42)
Q

Equation (42) is the basis of the error estimation proce-

dure presented here. By solving the problem twice, we

have numerical solutions for both & and . The sources

/ and .# are then determined from (41). Therefore, we

can define an error function 8, in each element as

If (& f—a-a)dQll
5, =
¢ o¥

(43)
where

—_ 1 2v 1 2
¥ jﬂ(zeneﬂn el 0. ()

' The global error 6 in the numerical solutions is given by
8=1Y3,. (45)

2) Adaptive Procedure: Having created an initial mesh
using the Delaunay triangulation [19], the next step is to
refine the grid iteratively, subdividing only those elements
having the largest errors. For dielectric waveguides, the
pracedure adopted is to solve the problem twice for &
and & over the initial mesh and then to compute the
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Fig. 2. Cross section of a reétangular dielectric image line.
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Fig. 3. Dispersion characteristics for the first two modes in the image
line.

error in each element separately, according to (43). The
maximum element error (3,),,, is computed. Those ele-
ments having an error greater than 0.5(5,),,,, are then
subdivided. This procedure is repeated until the giobal
error is sufficiently small.

III. NumEeRricaL RESULTS

A general-purpose computer program has been written
to implement the preceding analysis. Various examples
including an image guide, a microstrip transmission line,
and a pedestal-supported stripline have been studied. The
numerical results together with comparisons with pub-
lished solutions are presented in this section.

A. An Image Guide

Fig. 2 shows the dimensions and the material propetties
of a rectangular dielectric image guide. Although the
fields in this image guide actually extend to infinity, we
have truncated the problem domain to simplify the analy-
sis. A magnetic wall is placed on three sides of the outer
boundary as indicated in Fig. 2. The computed dispersion
characteristics for the first two modes are shown in Fig. 3.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 8, AUGUST 1991

1268
3=0.0742 3=0.0341
N
@ ® / \
5=0.0337 8=0.0307 f \
Fig. 5. Power distribution for the first mode in the image line at
kc=2.0.
©. (d) ‘
§=0.0158 §=0.0110
(e) 6]
8 =0.006
(a)
(g
Fig. 4. Automatic mesh refinement for the image line at k¢ = 2.0.
N
Good agreement between these results and those of Ogusu
[21] is observed. _
‘'To demonstrate the performance of the adaptive proce-
dure, Fig. 4 show the steps in the mesh refinement for the

first mode at kc = 2. This process is terminated when the
global error 6 is smaller than 1.0e —2. The global error &
with each iteration is also indicated in the figure. As can
be expected, the reaction of the field on the source is
reduced by refining the mesh. The dispersion characteris-
tics in Fig. 3 are obtained by using the final mesh in Fig. 4
throughout the entire spectrum. Fig. 5 plots the contour
lines of the power distribution at kc = 2. It is observed
from Fig. 5 that the adaptive procedure has refined the
regions carrying peak power.

It is worth mentioning that the adaptive procedure
results in a different mesh for each mode. This point is
illustrated in Fig. 6. Fig 6(b) shows the power distribution
of the second mode and is different from the power
distribution of the first mode in Fig. 5. Therefore, even
though both modes are computed by starting with the

Fig. 6. The refined mesh and the power distribution for the second
mode in the image line at k¢ = 2.0: (a) the refined mesh; (b) the power
distribution.

same initial mesh, the refined meshes in Figs. 4(g) and
6(a) for the first mode and the second mode, respectively,
are not identical.

B. An Infinite Thin Microstrip Line

The method presented here also applies to infinitely
thin microstrip structures. However, it is necessary to take
extra care in computing the &# solution in the adaptive
procedure to allow the tangential components of the #
field to be discontinuous across the thin strip. The discon-
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Fig. 7. A typical microstrip transmission line enclosed in a box. m . K‘\
. Y N
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Fig. 10. Contour plots of: (2) E, and (b) H, for the microstrip trans-
mission line.
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Fig. 8. The refined mesh for the microstrip generated by using the
adaptive procedure at 10 GHz. 6 = 0.0073 in this case. . |<_ b __>| T
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Fig. 9. The effect dielectric constant versus frequency for the mi- '
crostrip transmission line. Fig. 12. Dispersion characteristics of the pedestal-supported stripline.
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5 = 0.0244

Fig. 13. The refined mesh for the pedestal-supported stripline at 10
GHz.

tinuity of the field is supported by the surface current
S = A X(H, — H#,) that flows in the strip.

Fig. 7 shows a typical microstrip line with strip width
12.16 mm, substrate height 3.04 mm, and dielectric con-
stant 11.7. The strip is assumed to be an infinitely thin
perfect conductor. By requiring the global error 8 to be
smaller than 1.0e —2, the adaptive procedure generates
the final mesh pattern shown in Fig. 8. It is evident from
this figure that the procedure has identified the two
singular points at the edges of the strip and consequently
refined the grids there. The presence of the singularities
degrades the accuracy of the numerical approximations
and thus slows the convergence of the adaptive proce-
dure. Therefore, it is of fundamental importance to prop-
erly model the singular points by using special elements,
for example the singular elements presented in [22]
and [23].

Fig. 9 presents the computed effective dielectric con-
stant for the microstrip transmission line compared with
the results in [24]. The discrepancy is at most 1.3%.
Contour plots of the &, and &, components at 10 GHz
are shown in Fig. 10. In particular, these components are
high near both edges of the strip.

C. A Pedestal-Supported Stripline

A pedestal-supported stripline structure is shown in
Fig. 11. The dimensions of the stripline as well as the
diclectric constant are indicated in this figure. This device
was investigated in [25] by using the spectral-domain
approach. Our results are in agreement with those of
Chan [25], as can be seen from Fig. 12. In Fig. 13, we
show the refined mesh and the global error & at 10 GHz.
Since there are four singularities in this structure, the
convergence of the numerical solutions is very slow. Thus,
we have terminated the adaptive process with the global
error & =0.0244. Vector plots of the transverse electric
field & and the transverse magnetic field # are pro-
‘vided in Fig. 14.
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Fig. 14. Vector plots for the transverse fields in the pedestal-sup-
- ported stripline at 10 GHz: (a) E,; (b) H,.

IV. CoNcLusION

A new numerical procedure has been presented for the
full-wave analysis of dielectric waveguides. In this proce-
dure, a novel tangential vector finite element is proposed
for the electromagnetic field computation. Unlike conven-
tional nodal finite element methods, tangential vector
finite elements impose only the tangential continuity of
the electric or the magnetic field across element bound-
aries. In this way, the new method not only matches the
underlying physical requirements but also provides reli-
able numerical solutions. Various structures have been
analyzed and numerical results compare well with those
obtained elsewhere by other methods. From these struc-
tures, we have demonstrated the generality of the present
analysis.

In this paper, we have also derived an error estimation
procedure for the numerical solutions of dielectric wave-
guides. The error analysis procedure developed here is
based on the reaction concept. By means of numerical

examples, we have shown that this new error analysis

procedure can be used to successfully automate the mesh
refinement process.
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