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Full-Wave Analysis of Dielectric
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Abstract —A new method is presented for the analysis of

dielectric waveguides. This method provides four major new
contributions: 1) a transformation of variables is introduced
that allows propagation constants to be computed directl~

2) %I(curl) tangential vector finite elements are applied to

dielectric waveguides to obtain reliable approximate electromag-
netic fields; 3) the Lanczos algorithm is modified to solve the
required generalized eigenmatrix equation efficiently and 4) the

reaction principle is used to provide a posteriori error estimates
for use in adaptive mesh refinement. The method described here

produces reliable solutions and applies to structures that con-
tain both electric and magnetic inhomogeneities. The answers

are refined adaptively to generate wavegnide eigenmodes to
specified accuracy. Numerical results of an image guide, a
microstrip transmission line, and a pedestal-supported stripline

are shown. Computed solutions agree very well with the previ-
ously published results.

I. INTRODUCTION

A T microwave, millimeter-wave, and optical frequen-

cies, various applications of dielectric waveguides

have been suggested. In the design of these structures, it

is important to calculate the propagation characteristics

of the guided modes in the waveguide. According to

Maxwell’s equations, all of the propagating modes within

an inhomogeneous structure are hybrid. Therefore, to

analyze such waveguides, it is necessary to perform full-

wave analysis.

Various types of analysis methods have been proposed

and used. Typical methods are the method of moment [1],

spectral-domain methods [2], finite difference methods

[3], [4], and finite element methods [5]-[7]. The finite

element method is probably the waveguide analysis

method that is the most generally applicable and most

versatile. With this method, it is possible to fit any polygo-

nal shape by choosing triangular element shapes and sizes
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and to increase the accuracy of the solution by using

high-order polynomial approximation functions.

The most serious difficulty in using the finite element

method for the analysis of the modes of dielectric wave-

guides is the appearance of spurious modes [7], [8]. Re-

cent reports [7]–[9] have suggested various ways to solve

this problem. Rahman and Davies [7] have used a penalty

function to enforce the divergence-free condition. This

requires the user to select a suitable penalty function

parameter. Kobelansky and Webb [8] proposed using the

fields which are exactly divergence-free to be the basis

functions in the finite element analysis. Such fields are

themselves computed by the finite element method. This

approach requires intensive computations since at least

tens of basis functions need to be calculated from an

auxiliary eigenmatrix equation.
In [9], Wong and Cendes observed that the occurrence

of the spurious modes is due to the improper modeling of

the null space of the curl operator. Subsequently, they

suggested three approaches to eliminate spurious modes:

using Cl finite elements, using a consistent Cl mesh, and

using tangential elements [12]. C 1 finite elements and the

C 1 consistent mesh allow the derivatives of the finite

element basis functions to be continuous. In this way, the

null space of the curl operator is modeled exactly and the

spurious modes degenerate to eigensolutions with eigen-

value zero.
Except for the tangential element method, the above

methods are all based upon a nodal finite element ap-

proach. Consequently, the resultant field is continuous in

both normal and tangential components across element

boundaries. For structures that have both electric and

magnetic inhomogeneities, special care is required on
element boundaries to ensure correct interracial bound-

ary conditions.

A different approach to eliminating spurious modes is

to use tangential vector finite elements [9], [11], [12]. With

tangential vector finite elements, only the tangential con-

tinuity of the vector field is imposed across element

boundaries. The advantages of this approach are that 1) it

imposes only the continuity of the tangential components

of the electric and magnetic fields, as is required physi-

cally; 2) the interracial boundary conditions are automati-

cally obtained through the natural boundary conditions
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built into the variational principle [12]; and 3) Dirichlet

bouncku-y condition can be easily set along the element

edges Various families of tangential elements are dis-

cussed in [11]. The lowest order tangential vector finite

elements are edge elements [10] in which the unknown

variables are associated with the edges of the element.
In this paper, we present the application of the high-

order %I(curl) tangential vector finite elements to model

dielectric waveguides. The formulation employs a variable

transformation that allows the propagation coustants in

waveguides to be computed at a specified frequency rather

than the other way around. In addition, an a posterior

error criterion based on the reaction concept is used to

refine the finite element mesh adaptively.

II. NUMERICAL PROCEDURE

In the full-wave analysis of dielectric waveguides, it is

necessary to solve the following boundary value problem

(BVP):

Vx&c5-k2@=0 in 0
w,

&’Xn=O on rl

VXc5’Xn=O on r2 (1)
:,+

where Q is the cross section of the guiding structure

whose boundary is divided into two parts: the electric wall

rl and the magnetic wall 17z. Here, the electric field is

assumed to have a z dependence as & = E(x, y) exp

(– j/3z), where ~ is the propagation constant.
The corresponding variational functional for the BVP

(1) cam be written as [13]

&(&) =/ lIV X G$[2– k2c,ld’12dQ
av’r

=/Q~[lv,<+j~42+lv x&12]7=’7

–k2e,l&’12dQ

where 87 = d?xax + &yay and VT =dxax +~YaY.

There are two approaches in solving elgenproblem

(2)

(0

by using the functional in (2). One is to solve for k2 with

the propagation constant (3 given. The other is to specify

the operating frequency and solve for the propagation

consl ant /3. As pointed out in [14], the latter is preferred

in practical device design. Therefore, in this paper, we

present a numerical methodology to analyze dielectric

waveguides using the second approach.

A. Transformation of Variables

Imposing the operating frequency in functional (2) re-

sults in a quadratic eigenmatrix equation for f? that is very

difficult and expensive to solve. Furthermore, /3 is real for
a propagating mode and imaginary for an evanescent

mod(a Thus, this approach requires the solution of com-

plex eigenvalues. However, these two problems can be

eliminated by introducing the following transformation of

variables:

e, = /3@X

eY = ~&Y

ez=–j@Z. (3)

With the variable transformation (3), the functional (2)

can be rewritten as

+ $lVr X e,12dQ. (4)

In the functional (4), only k 2 and ~2 are involved. Thus,

extremizing the functional (4) with k 2 as the given param-

eter, we have an eigenmatrix equation to solve for the

eigenvalues ~2, Furthermore, the eigenvalues will be real

since ~ 2 is positive for a propagating mode and negative

for an evanescent mode.

The Euler equation that corresponds to the functional

(4) is

and the boundary conditions are

fiXe=O on rl

(VTez+e,)”i?=O

V, Xe,”az=O ) oii r2. (6)

Applying the transverse divergence operator, V,”, on

both sides of (5a) results in

– ~2V,” ~V,ez + f12V,” ~eT = k2V,” ere,. (’7)

Adding (7) to (5b) for k2 # O yields

This is Gauss’s law for the source-free region. From (8), it

is clear that as long as the operating frequency is not O,

solutions of (5) must satisfy the divergence-free condition.

The functional form given in (4) is symmetric. From tlhe

resulting Euler equation (5), there is a set of eigensolu-

tions corresponding to ~2 = O. However, the solutions of

this set are not physical modes of the dielectric waveguide

since e, is arbitrary when ~2 = O in (5).

B. Tangential Vector Finite Elements

As mentioned earlier, several approaches can be used

to eliminate spurious modes. Tangential vector finite ele-

ments are preferred because they most closely match the

mathematical and physical requirements of modeling {cli-

electric waveguides. In this subsection, we present the

construction of the two-dimensional ,%I(curl) tangential
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Fig. 1. The two-dimensional %?I(curl) tangential vector finite element.

vector finite element. The two-dimensional &?l(curl) tan-

gential vector finite element is described mathematically

as

&l?l(curl) = (eTleT = [L2(fl)]2,VT X e,. az ~ 91(Q))

(9)

where Lz(fl) is the set of square integrable functions, and

@l(Q) is the set of piecewise-linear functions in the

problem domain 0. Since the %I(curl) tangential vector

finite element provides a higher order approximation

than is obtained from edge elements [10], it will provide

more accurate numerical solutions and faster convergence

in applications.

Unknowns in the =I(curl) element are assigned as

shown in Fig. 1. The tangential projection of the field e,

along any edge {i, j} is determined by two unknowns, e:.

and e~j. In addition, two facial unknowns, fO and f ~, are

added t~ provide a quadratic approximation of the ‘nor-

mal component of the field along any two of the three

edges. Notice that in Fig. 1, the edge variables e;. and e~j

provide common unknowns across element boundaries.

Thus, the tangential continuity of the field e, across the

element boundaries is ensured. However, the facial vari-

ables f. and fl are local unknowns associated with each

separate triangular element. These two facial variables

are included to provide a complete linear approximation

for VT X e,.

We can express the transverse field e, by the nodal
vectors ei as

e,= ~ eiai(J) (lo)
~=o

where ~ = (JO, {1, (z) is the two-dimensional barycentric

coordinate [15], and ai(() is the second-order Lagrange

interpolation polynomial at node i. However, with tan-

gential elements the nodal vectors ei are not independent

unknowns. The edge variables e;. and e}j and the facial

variables f. and fl are used as independent unknowns in

the %I(curl) tangential finite element formulation.

We need to determine the nodal vectors ei in terms of

the new set of variables. At node O, the nodal vector e“

satisfies

where ;ij is the unit vector pointing from node i to node

j. The solution of (11) is

(12)

where fiij is the outward-directed normal of the edge

{i, j}. BY observing that iiij” ~~ = – sin Oj and fiij. f~i =
sin (?i, (12) can be simplified further as

1
eO=- [ 1e~ofiol — ej1fi20 .

m 90
(13)

Similar expressions are obtained for the nodal vectors e 1

and e 2. The results are

1
el=- [ e&fi12 — efzfiol

sm 131 1

1
e2=- [ 1e~2fi20 — e~o?112 .

sm 02
(14)

There are several ways to assign the facial variables f.

and f ~. One is to define them as the quadratic part of the

normal components along two of the three edges:

fo=(e’-+)”’o

fl=(e’-vl”’o
(15)

The tangential component along each edge is approxi-

mated to linear order. Thus, the nodal vectors e4 and es

are given by

e4 =
e“ + e2
— + fol?2Q

2

es =
e“ + el
— + flfiol

2
(16)

The vector e3 is simply the linear average of el and e2:

e3 =
e1+e2

2“
(17)

Substituting (13), (14), (16), and (17) into (10), the

transverse field e, within the triangular element is given

as

1,e,.~—[e~iilij —e~jjki
1i=osindi

+ fo&o(UoiJ + flfiol(4JoJJ (W

where the indices i, j, and k are cyclic modulo 3. From
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expression (18), we can write VT x e, as

1
V7Xe7=—

[
.

e~tv,[z X nl~ — e~.VTl[ X iikl
sin OL 1

+ fo[4Kov7g2 +4(2VT(OI x fi20

+ fl[4Jov,(l +4 JIV, (O I x fiol. (19)

This can be reduced further to

‘2 I,k
VT XeT= ~ —[e~, +ej.]az

,=02A

+ jfo[lol sin do~o – 112sin @zlzlaz

+ ~~1[112 sin 6111 – 120sin Ool’olaz (20)

where A is the area of the triangle, and 1,, is the length of

edge {i, j}. Equation

following equations:

(20) is obtained with the aid of the

fi,j X i?j~ = sin 13ja,

It is apparent from, (20) that the two facial variables ~0

and ,fl provide the required linear terms in V, X e,, while

the edge variables together contribute the constant term.

Therefore, expression (18) describes the desired two-

dimensional %I(curl) tangential vector finite element.

Since a, is always normal to the waveguide cross sec-

tion and tangential to material interfaces, it is natural to

use Lagrange interpolation polynomials to model the e.
component. However, to be consistent with the #l(curl)

element, the approximation for eZ must be complete to

second order. The reason is as follows: the curl of the

field e can be written as V X e = (V7ez + e,)X a= + Vr X

e,. Since VT X eT is complete to the first order, the gradi-

ent field V, e= should also be complete to first order.

Therefore, we need to use second-order approximation

polynomials to model e=.

C. Modified Lane.ms Algorithm

1) The Eigenmatrti Equation: As described in the pre-

vious subsection, the vector function space & for the trial

fielcl e is

{[ II }
4= $ e, e %?I(curl), e= G .92(Q) . (22)

Applying (22) to the functional (4) and carrying out the

integration gives

(23)

1265

where

e~de, = /1L VT,X eT12– k2fsrleT12dfl
O/J.

The stationary point of the functional (23) is also the

solution of the following generalized eigenmatrix equa-

tion:

Notice that the matrix on the left side of (25) is singular.

Therefore, there are degenerate eigenvectors that corre-

spond to ~2 = O. With ~2 = O, these eigenvectors do riot

satisfy ~e, + ~ez = O. Thus, they are nonphysical solu-

tions introduced by the variable transformation (3).

From the generalized eigenmatrix equation (25), it is

apparent that the nonphysical solutions that correspond

to ~ z = O form a vector function space A, where

{[ IIA= :’
}

e,= O,eZ#O .
z

(26)

The suppression of these nonphysical solutions in the

Lanczos algorithm [16] is the subject of the next subsec-

tion.

Assuming the waveguide is lossless, it can be verified

that there exists an upper bound 6)2 = k 2K emax max for the

eigenvalue 62, where p ~= is the maximum relative per-

meability and ~~aX is the maximum relative permittivity of

the materials within the wavegtiide. Physically, @ is the

propagation constant of a TEM wave in a homogtmec)us

medium with material properties I-L~= and .s~,,.

By using the upper bound @z, we can rewrite (25) as

The reason for transforming (25) into (27) is as follows: in

a dielectric waveguide, a more dominant mode corre-

sponds to a more positive ,value of Q2 and therefore

@2/(@2 – /32) will be larger. A!though, in the literature

[16], it is said that the Lanczos Mgorithm can compute

either the largest or the smallest eigenvalue of the eigen-

matrix equation efficiently, numerical experience indi-

cates that the largest eigenvalue almost always converges

faster than the smallest one. Thus, if we solve (27) by

using the Lanczos algorithm, the eigenpairs will converge

more or less by the order of dominance. In most applica-

tions where only a few eigenmodes are sought, this fea-

ture is very desirable.
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2) Suppression of the Degenerate Solutions: The ele-

ments in the function space A are degenerate eigensolu-

tions of (25) with /32 = O. The occurrence of these addi-

tional solutions in the iterative process will slow down the

convergence of the desired eigenpairs in the Lanczos

algorithm.

To simplify the discussion, (27) is rewritten in the

following form:

94= /i2?4 (28)

where

(29)

Based on (28), the Lanczos algorithm can be described as

follows: For a Krylov subspace &n that is spanned by the

following vectors: 4., (JZ- 1.9)4.,. “ “, (JZ- l@)m- 140,
where 40 is the initial guess, the Lanczos algorithm seeks

to approximate each eigenpair by the pair Am, 4m satisfy-

ing

4“ E Zm

(9- AmJ2)4”1Zm. (30)

Since the matrices P and L2 are real and symmetric,

the following two properties can be proved [11]:

“ Assume that (A1,41) and (A2,42) with Al # Az are

two eigenpairs of (28). Then 4~L2412= O.

● If the initial guess 40 satisfies 4~12240= O, V4n G A,

then for any vector ~ = ~m we have 4~Q’4 = O,

V4n e A.

Thus, if we can select an initial guess 40 such that

J240-LA, then additional solutions will not occur during

the iterative process. This can be done, for example, by

solving 4(1from the following equation:

[1JZ’40= ;

where

m r07
1 0

y,= . and y== ; .

(31)

(32)

11i 110
3) Modified Lanczos Algorithm: The Lanczos algorithm

has been successfully applied to large sparse symmetric

generalized eigenmatrix equations [16], [17]. Interested

readers are referred to [16] and [17] for details. In equa-

tion (28), neither @ nor -’2? is a positive definite matrix.

Thus, (28) does not have the right form and we need to

modify the Lanczos algorithm to it. As a result of this

modification, the reduced eigenmatrix equation is not a

symmetric tridiagonal matrix. It becomes a nongymmetric,

but still tridiagonal, matrix. This reduced eigpnmatrix

equation can be solved by calling suitable procedures

from EISPACK [18]. The modified version of the Lanczos

algorithm for the present application is outlined as fol-

lows:

1)

2)

3)

4)
5)

6)

7)

8)

9)

Input the number of desired modes.

Choose a vector q such that q 1 A. For the A in

(26), we choose q as

q=

where

qT[l,l, ”””

9,
9=1
l]’, qz = o.

(33)

(34)

Orthogonalize q against the previous converged

eigenvectors ~i by

n,

ij=q-~ai4’

where nC is the number of converged eigenpairs.

Solve the matrix equation s24 = @for 4.
Normalize 4 and assign the resultant vector as Ul,

4

“ = 11411‘
m=l, (36)

Assign a vector ~ as follows:

where

LIL@ Llm

h m,m=
u; 22 Um

Solve the matrix equation &2?0= f for o and assign

h wZ+l,m=ll@ll
Calculate the dominant eigenpair (A(n), y(n)) of the

tridiagonal matrix Hn, where Hm is

[

h h1,21,1

h h2,2 h2,32,1 1

1 h m—l, m

h m,m —1 h m,m 1

(39)

Solving the dominant eigenpair of H~ can be done,

by calling EISPACK procedures. Then, check the

residual norm h ~+ I,nl Y~~)l for convergence; if not
converged, increment m by 1 and go to step 6.

Increment nC by 1, and construct the Ritz vector. If

all the desired modes have converged, then stop.

Otherwise go to step 2.
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D. Adaptive Mesh Refinement

In the adaptive mesh generation procedure in this

paper, the degree of elements is kept fixed and only the

mesh is refined. In the literature, this type of mesh

refinement is called the h version.

1) A Posteriori Error Estimation: In the previous sec-

tions,, the formulation was derived to solve for the electric

field 8. Similarly, a variational formulation can be ob-

tained for the magnetic field %. To analyze the quality of

the obtained solutions and obtain quantitative informa-

tion about the error, we solve the problem once each for

‘ & and %. As pointed out by Bossavit and Mayergoyz

[10], this approach, though requiring more work, provides

useful information for error analysis. This is because of

the cluality of & and 2?.

Here, we provide a new procedure for computing er-

rors in finite element solutions. This procedure is based

on the reaction concept [13], [20]. By definition, the

reaction of field a on source b is [13]

(a, b) =( (r$’a#b-%a.d Zb)dQ (40)
Q

The sources ~b and &~ can be determined from the

trial fields r%” and S??b according to

/’ =V X J??b - jcoec$’b

4?b=-(VX&b+jO~%b). (41)

The true field at resonance is a source-free field; thus the

reaction of any field with the true source is zero. Hence,

if we let a = b represent a trial field and the associated

source, (40) reduces to

Equation (42) is the basis of the error estimation proce-

dure presented here. By solving the problem twice, we

have numerical solutions for both & and 2?. The sources

~ and & are th en determined from (41). Therefore, we

can define an error function 8. in each element as

tie = ‘“’ (43)
tiT

where

)7=/ (;M’ + ;A%ll’ dfl. (44)
0-

The global error 8 in the numerical solutions is given by

ti=~8e. (45)
e

2) Adaptive Procedure: Having created an initial mesh

using the Delaunay triangulation [191, the next step is to

refine the grid iteratively, subdividing only those elements

having the largest errors. For dielectric waveguides, the

procedure adopted is to solve the problem twice for &

and % over the initial mesh and then to compute the

1267
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—

&r= 2.5

Fig. 2. Cross section of a rectangular dielectric image line.

1.60-

1.40-

1.20-

-—. ,

THIS METHOD

OGUSU

I
/

/

1.00 /
1,,,,,,,,,1,,,,,,,,,1,, ,,~,,1,1~,111,,[~

0.00 1.00 2.00 3.00 4.00 5.00

kc

Fig. 3. Dispersion characteristics for the first two modes in the image

line.

error in each element separately, according to (43). The

maximum element error (8e)~= is computed. Those ele-

ments having an error greater than 0.5(i3=)~= are then

subdivided. This procedure is repeated until the global

error is sufficiently small.

III. NUMERICAL RESULTS

A general-purpose computer program has been written

to implement the preceding analysis. Various examples

including an image guide, a microstrip transmission line,

and a pedestal-supported stripline have been studied. The

numerical results together with comparisons with pub-

lished solutions are presented in this section.

A. An Image Guide

Fig. 2 shows the dimensions and the material properties

of a rectangular dielectric image guide. Although the

fields in this image guide actually extend to infinity, we

have truncated the problem domain to simplify the analy-

sis. A magnetic wall is placed on three sides of the outer
boundary as indicated in Fig. 2. The computed dispersion

characteristics for the first two modes are shown in Fig 3.
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6 = 0.0742

Exl
(a)

ii= 0.0337

6 = 0.0341

(b)

8 = 0.0307

(c)

6=0.0158

(d)

5=0.0110

(e)

6 = 0.006

(f)

(g)

Fig. 4. Automatic mesh refinement for the image line at kc= 2.0.

Good agreement between these results and those of Ogusu
[21] is observed.

To demonstrate the performance of the adaptive proce-

dure, Fig. 4 show the steps in the mesh refinement for the

first mode at kc= 2. This process is terminated when the

global error S is smaller than l.Oe – 2. The global error 8

with each iteration is also indicated in the figure. As can

be expected, the reaction of the field on the source is

reduced by refining the mesh. The dispersion characteris-

tics in Fig. 3 are obtained by using the final mesh in Fig. 4

throughout the entire spectrum. Fig. 5 plots the contour

lines of the power distribution at kc =2. It is observed

from Fig. 5 that the adaptive procedure has refined the
regions carrying peak power.

It is worth mentioning that the adaptive procedure

results in a different mesh for each mode. This point is

illustrated in Fig. 6. Fig 6(b) shows the power distribution

of the second mode and is different from the power

distribution of the first mode in Fig. 5. Therefore, even

though both modes are computed by starting with the

I
I

Fig. 5. Power distribution for the first mode in the image line at
kc= 2.0.

5=0.0053

(a)

(b)

Fig. 6. The refined mesh and the power distribution for the second

mode in the image line at kc = 2.0: (a) the refined mesh; (b) the power
distribution.

same initial mesh, the refined meshes in Figs. 4(g) and

6(a) for the first mode and the second mode, respectively,
are not identical.

B. An Infinite Thin Microstrip Line

The method presented here also applies to infinitely

thin microstrip structures. However, it is necessary to take

extra care in computing the 2? solution in the adaptive

procedure to allow the tangential components of the %

field to be discontinuous across the thin strip. The discon-
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I 1

(a)

&r=ll,7
~1

W=12.16mm

h. 3.04 mm

Fig. 7. A typical microstrip transmission line enclosed in a box.

5 = 0.0073 (b)
Fig. 10. Contour plots of (a) E= and (b) Hz for the microstrip trans-

mission line.

Fig. 8, The refined mesh for the microstrip generated by using the
adaptive procedure at 10 GHz. 6 = 0.0073 in this case.

I 2,00
7J

u
c
(3

%

: f 0,00-
0

v.-
L ,

-G
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“; 8.00
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THIS METHOO

a)
>.—

u 1 --- SHIH et al.

~ e.OOO~
5.00 10.00 15.00 20.00$

Freq (GHz)

I---+a+
~T a = 23.81 mm

b = 9.5 mm

Fig. 11. Cross section of a pedestal-supported stripline.

3.50 - ,:

3.00-

1-
THIS METHOO

2!00 --- CHAN et al.

.4

i .50 ! 1 I
0.00 5.00 10.00 15.00 2;?00

Freq (GHz)

Fig. 9. The effect dielectric constant versus frequency for the mi-
crostrip transmission line. Fig. 12. Dispersion characteristics of the pedestal-supported stripline.
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6= 0.0244

Fig. 13. The refined mesh for the pedestal-supported stripline at 10
GHz.

tinuity of the field is supported by the surface current

A = 2 X(%1 – %Z) that flows in the strip.

Fig. 7 shows a typical microstrip line with strip width

12.16 mm, substrate height 3.04 mm, and dielectric con-

stant 11.7. The strip is assumed to be an infinitely thin

perfect conductor. By requiring the global error 8 to be

smaller than 1.Oe – 2, the adaptive procedure generates

the final mesh pattern shown in Fig. 8. It is evident from

this figure that the procedure has identified the two

singular points at the edges of the strip and consequently

refined the grids there. The presence of the singularities

degrades the accuracy of the numerical approximations

and thus slows the convergence of the adaptive proce-

dure. Therefore, it is of fundamental importance to prop-

erly model the singular points by using special elements,

for example the singular elements presented in [22]

and [23].

Fig. 9 presents the computed effective dielectric con-

stant for the microstrip transmission line compared with

the results in [24]. The discrepancy is at most 1.3’%.

Contour plots of the ~ and ~ components at 10 GHz

are shown in Fig. 10. In particular, these components are

high near both edges of the strip.

C. A Pedestal-Supported Stripline

A pedestal-supported stripline structure is shown in

Fig. 11. The dimensions of the stripline as well as the

dielectric constant are indicated in this figure. This device

was investigated in [25] by using the spectral-domain

approach. Our results are in agreement with those of

Chan [25], as can be seen from Fig. 12. In Fig. 13, we

show the refined mesh and the global error ti at 10 GHz.

Since there are four singularities in this structure, the

convergence of the numerical solutions is very slow. Thus,

we have terminated the adaptive process with the global

error 8 = 0.0244. Vector plots of the transverse electric

field &, and the transverse magnetic field ~ are pro-

vided in Fig. 14.

,..
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. . . .+. . . . . . . . . . . . .
. . . . . .
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Fig. 14. Vector plots for the transverse fields in the pedestal-sup-

ported stripline at 10 GHz: (a) E,; (b) H,.

IV. CONCLUSION

A new numerical procedure has been presented for the

full-wave analysis of dielectric waveguides. In this proce-

dure, a novel tangential vector finite element is proposed

for the electromagnetic field computation. Unlike conven-

tional nodal finite element methods, tangential vector

finite elements impose only the tangential continuity of

the electric or the magnetic field across element bound-

aries. In this way, the new method not only matches the

underlying physical requirements but also provides reli-

able numerical solutions. Various structures have been

analyzed and numerical results compare well with those

obtained elsewhere by other methods. From these struc-

tures, we have demonstrated the generality of the present

analysis.

In this paper, we have also derived an error estimation

procedure for the numerical solutions of dielectric wave-

guides. The error analysis procedure developed here is

based on the reaction concept. By means of numerical

examples, we have shown that this new error analysis

procedure can be used to successfully automate the mesh

refinement process.
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